Purification and biochemical characterization of recombinant Persicaria minor β-sesquiphellandrene synthase

نویسندگان

  • De-Sheng Ker
  • Sze Lei Pang
  • Noor Farhan Othman
  • Sekar Kumaran
  • Ee Fun Tan
  • Thiba Krishnan
  • Kok Gan Chan
  • Roohaida Othman
  • Maizom Hassan
  • Chyan Leong Ng
چکیده

BACKGROUND Sesquiterpenes are 15-carbon terpenes synthesized by sesquiterpene synthases using farnesyl diphosphate (FPP) as a substrate. Recently, a sesquiterpene synthase gene that encodes a 65 kDa protein was isolated from the aromatic plant Persicaria minor. Here, we report the expression, purification and characterization of recombinant P. minor sesquiterpene synthase protein (PmSTS). Insights into the catalytic active site were further provided by structural analysis guided by multiple sequence alignment. METHODS The enzyme was purified in two steps using affinity and size exclusion chromatography. Enzyme assays were performed using the malachite green assay and enzymatic product was identified using gas chromatography-mass spectrometry (GC-MS) analysis. Sequence analysis of PmSTS was performed using multiple sequence alignment (MSA) against plant sesquiterpene synthase sequences. The homology model of PmSTS was generated using I-TASSER server. RESULTS Our findings suggest that the recombinant PmSTS is mainly expressed as inclusion bodies and soluble aggregate in the E. coli protein expression system. However, the addition of 15% (v/v) glycerol to the protein purification buffer and the removal of N-terminal 24 amino acids of PmSTS helped to produce homogenous recombinant protein. Enzyme assay showed that recombinant PmSTS is active and specific to the C15 substrate FPP. The optimal temperature and pH for the recombinant PmSTS are 30 °C and pH 8.0, respectively. The GC-MS analysis further showed that PmSTS produces β-sesquiphellandrene as a major product and β-farnesene as a minor product. MSA analysis revealed that PmSTS adopts a modified conserved metal binding motif (NSE/DTE motif). Structural analysis suggests that PmSTS may binds to its substrate similarly to other plant sesquiterpene synthases. DISCUSSION The study has revealed that homogenous PmSTS protein can be obtained with the addition of glycerol in the protein buffer. The N-terminal truncation dramatically improved the homogeneity of PmSTS during protein purification, suggesting that the disordered N-terminal region may have caused the formation of soluble aggregate. We further show that the removal of the N-terminus disordered region of PmSTS does not affect the product specificity. The optimal temperature, optimal pH, Km and kcat values of PmSTS suggests that PmSTS shares similar enzyme characteristics with other plant sesquiterpene synthases. The discovery of an altered conserved metal binding motif in PmSTS through MSA analysis shows that the NSE/DTE motif commonly found in terpene synthases is able to accommodate certain level of plasticity to accept variant amino acids. Finally, the homology structure of PmSTS that allows good fitting of substrate analog into the catalytic active site suggests that PmSTS may adopt a sesquiterpene biosynthesis mechanism similar to other plant sesquiterpene synthases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpressing 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase (HMGR) in the Lactococcal Mevalonate Pathway for Heterologous Plant Sesquiterpene Production

Isoprenoids are a large and diverse group of metabolites with interesting properties such as flavour, fragrance and therapeutic properties. They are produced via two pathways, the mevalonate pathway or the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway. While plants are the richest source of isoprenoids, they are not the most efficient producers. Escherichia coli and yeasts have been extensi...

متن کامل

Biochemical characterization of recombinant benzyl alcohol dehydrogenase from Rhodococcus ruber UKMP-5M

Benzyl Alcohol Dehydrogenase (BADH) is an important enzyme for hydrocarbon degradation, which can oxidize benzyl alcohols to aldehydes, while being capable of catalyzing a reversible reaction by reducing benzaldehyde. BADH is a member of medium chain alcohol dehydrogenases, in which zinc and NAD are essential for enzyme activity. This paper describes the expression, purification, and characteri...

متن کامل

Biochemical characterization of recombinant benzyl alcohol dehydrogenase from Rhodococcus ruber UKMP-5M

Benzyl Alcohol Dehydrogenase (BADH) is an important enzyme for hydrocarbon degradation, which can oxidize benzyl alcohols to aldehydes, while being capable of catalyzing a reversible reaction by reducing benzaldehyde. BADH is a member of medium chain alcohol dehydrogenases, in which zinc and NAD are essential for enzyme activity. This paper describes the expression, purification, and characteri...

متن کامل

Expression, purification and kinetic characterization of recombinant benzoate dioxygenase from Rhodococcus ruber UKMP-5M

In this study, benzoate dioxygenase from Rhodococcus ruber UKMP-5M was catalyzed by oxidating the benzene ring to catechol and other derivatives. The benzoate dioxygenase (benA gene) from Rhodococcus ruber UKMP-5M was then expressed, purified, characterized, The benA gene was amplified (642 bp), and the product was cloned into a pGEM-T vector.The recombinant plasmid pGEMT-benA was digested by d...

متن کامل

Biochemical Characterization of Recombinant Thermostable Cohnella sp. A01 β-Glucanase

Background: Typically, non-cellulytic glucanase, including fungi and yeast cell wall hydrolyzing enzymes, are released by some symbiotic fungi and plants during the mycoparasitic fungi attack on plants. These enzymes are known as the defense mechanisms of plants. This study intends to investigate the biochemical properties of β-1,6-glucanase (bg16M) from native thermophilic bacteria, Cohne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017